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Project Summary 
The data, maps, and information in the Hudson River Flood Impact Decision Support System version 1 
illustrate the scale of potential flooding for tidally-affected shorelines of the Hudson River Valley and 
Westchester County under multiple sea level rise and storm scenarios to assist individual residents, 
communities, and municipal and regional planners.   

This information is unique because it is based on “dynamic” water flow modeling that combines tides, 
storm surges, sea level rise, and tributary freshwater inputs to the Hudson (Orton et al., 2018; Orton et 
al., 2016).  The flood zones for 5-year to 1000-year storm events are created using statistical analysis of 
data for a set of 881 storms representative of the various types of storms that could strike the region.  
The dynamic model is the same one that is used for the New York Harbor Observing and Prediction 
System (NYHOPS; http://stevens.edu/nyhops).   

Our modeling and mapping methodology is motivated by prior research that shows that it is not 
appropriate to assume storm surge and rain act independently to cause independent flood events 
(Orton et al., 2012).  The modeling  demonstrates that it is inaccurate to assume that sea level rise 
uniformly increases storm-driven flood elevations at all locations (“static superposition”) . This 
assumption is very good along the Hudson from Poughkeepsie southward, but in prior work we have 
shown that it leads to small low-biases in flood elevation estimates for Long Island Sound (Kemp et al., 
2017) and here we show that it leads to large high-biases for areas further northward along the Hudson.   

The sea level rise scenarios available within the tool range from 0 to 6 feet (0 to 1.83 m) above the base 
mean sea level of 1983-2001, a standard sea level used by the National Oceanic and Atmospheric 
Administration (NOAA).  Current projections from the updated ClimAID report still show high 
uncertainty about future sea level rise.  Projections for the year 2100 range from 1.25 to 6.25 feet (0.38 
to 1.91 m), the 10th and the 90th percentile values, respectively.  These apply to the Hudson River 
nearest New York City, but we note that numbers for the Hudson near the Troy dam are a few inches 
lower (Horton et al., 2015). The Sea Level Rise section of this report describes estimates of the year 
when we expect to see each of the sea levels highlighted in the web tool. 

The flood events are modeled with NYHOPS in tidal waterways, but mapped out onto surrounding 
floodplains using a simplified “bathtub” methodology.  Water level (also known as still water elevation) 
estimates produced by this modeling are subtracted from the New York State Department of 
Environmental Conservation’s (NYSDEC) 2011-2012 LIDAR-based land elevation dataset in order to 
produce flood depth estimates (Department of Commerce, 2011). The flood mapping procedure is 
described in more detail in the Mapping section of this report. 

Each of the flood scenarios presented in the mapping tool are accompanied by a set of impact 
estimates. These are divided into three themes: critical infrastructure, social vulnerability, and natural 
resilience features. Critical infrastructure impacts are estimated at the municipal level and consist of loss 
estimates derived from the HAZUS-MH 2.2 Flood Model, as well as counts of affected facilities, 
landmarks, and physical features. The social vulnerability information is summarized at the municipal 
and block group levels and is derived from a social vulnerability index based on the 2010 US Census, and 

http://stevens.edu/nyhops


American Community Survey (ACS) data. The information on natural resilience features is produced by 
calculating inundated and total land areas for several variables important for conservation and storm 
water amelioration. Each of these sets of impact estimates are described in more detail in the Impact 
Estimates section of this report.   

Flood Scenarios: Methods 
Flood zones are mapped along the Hudson River and Westchester County’s western Long Island Sound 
floodplains, accounting for storm surge, tides, rainfall flooding, and several scenarios of sea level rise in 
corresponding towns and municipalities. The user can choose from a range of flood events (by return 
period or for high tide only) and sea level rise scenarios.  Tributary floodplains are not included in the 
modeling and mapping – the flood mapping is only for the tidally-affected shorelines and adjacent 
floodplains. Details on the statistical flood hazard assessment, dynamic water modeling, sea level rise, 
and tidal flood simulations are provided in four subsections below.  

Storm flood hazard assessment 
A flood event return period (P) represents the expected average time between events; the inverse of 
return period (1/P) is the probability that a storm will occur in a given year.  For example, the 100-year 
event is expected to have a 1/100 chance (or 1 percent chance) of happening each year.  Because this is 
an annual probability, a “100-year event” does not mean that it will only occur once every 100 years. 
Although the probability is low, 100-year events have been known to occur twice in one year, or in back-
to-back years. 

The general statistical framework for the study requires four steps (Orton et al., 2018; Orton et al., 
2016): (1) historical data review, (2) storm climatology construction, (3) flood modeling, and (4) 
statistical analysis. The process is repeated for each sea level scenario.  Resulting data for each location 
describes the water level at each return period (or inversely, the probability of a given water level being 
reached). 

The worst historical flood events at NYC (Battery), western Long Island Sound (Kings Point), and Albany 
have been a mixture of tropical cyclones (TCs), offshore extratropical cyclones (ETCs; e.g. Nor’easters), 
and inland wet extratropical cyclone floods (WETCs; e.g. freshets, rain-on-snow events) (Figure 1).  
These types of events are all accounted for in the flood hazard assessment by (a) performing model 
validation on the worst historical events in each category and (b) creating a climatology of the possible 
storms in each. 

The ETC climatology illustrates 30 of the region’s worst historical storm surge events, with wind and 
atmospheric pressure data created for a regional FEMA flood mapping study (FEMA, 2014) by 
Oceanweather Inc.  Streamflow inputs to the Hudson are derived from historical data.  

The WETC storm climatology was derived by ranking historical streamflows from 1931-2013 at Troy, 
New York, and choosing the top 41 events that have occurred in the “cool season,” December through 
May, avoiding tropical cyclone events.  As with ETCs, streamflow inputs to the Hudson are derived from 



historical data.  Meteorological forcing (e.g. wind) is not imposed, as the streamflows dominate the 
water elevations for these storms and high-resolution meteorological data for the entire period is not 
available. 

 

 

Figure 1:  Historical top-20 flood events from 1931-2012 at Albany (top), New York City’s Battery Park 
(bottom left), and western Long Island Sound (bottom right). Tropical cyclones include tropical storms 
and hurricanes. Extratropical cyclones include nor’easters and other types of non-tropical storms.  

 

For the TC climatology, a set of 637 synthetic TCs is created based on a statistical model (e.g., Hall & 
Yonekura, 2013) derived from the statistics of historical North Atlantic TCs (1900 - 2010). Sample storm 
tracks are shown in Figure 2, focusing on storms that led to roughly 100-year floods.  We use simple 
parametric equations to represent each storm’s wind and pressure forcing for our ocean model (Orton 
et al., 2018; Orton et al., 2016). The modeling subsection below describes the methodology for modeling 
TC river streamflowss. 

Albany 

Battery Kings Point  



Tides for these storm simulations are randomly selected from a time series of tides from 1900-2013, 
with one simulation with random tide for each TC, one for each WETC, and 50 simulations with random 
tides for each ETC, where tides are a larger proportion of the total water level.  That is, the ETC storms 
are run 50 times each, oncefor each random tide scenario.  Tides are included in the hydrodynamic 
model and imposed at the edge of the continental shelf, as in the NYHOPS forecasting system (Georgas 
& Blumberg, 2009). 

 

Figure 2:  Select modeled synthetic tropical cyclone tracks colored by Saffir-Simpson category, on a map 
that includes the landfall gates (black lines; Orton et al., 2016). The storms that are shown lead to storm 
tides close to the 100-year event (2.5 - 2.9m) at The Battery (NYC) and occur at a rate higher than 0.0001 
per year. 

 

Distributions of occurrence rates for a range of water levels are constructed from model results at each 
model grid cell, separately for TCs, ETCs, and WETCs.  These are used to compute curves showing the 
probability of a flood exceeding a given water level, also known as a flood exceedance curve.  The 
probabilities for each type of storm are merged to form flood exceedance curves for any storm type.  
Lastly, for presentation, these data are plotted in terms of return period, which is the inverse of 
probability (1/P).  These computations are repeated for all grid cells within the model domain.  

This joint statistical-dynamical framework for assessing the flooding hazard from storm surges with a 
hydrodynamic model, using a combination of historical data and synthetic hurricanes, is similar to that 
used for the FEMA Region II (NY/NJ) flood zone mapping effort (FEMA, 2014).  However, the FEMA study 



used a simplified 2D storm surge model, and included no freshwater flow from rivers.  We improve upon 
their method by including freshwater inputs to the Hudson and using sECOM, a more detailed 
hydrodynamic model that has been used and validated for this region for over ten years 
(http://stevens.edu/NYHOPS), described below.  

Modeling 
This study uses computer modeling instead of historical water levels for two primary reasons: (1) to 
estimate the water level over an entire region, not just at tide gauges, thus overcoming a limitation of 
tide-gauge based assessments and (2) to enable the study to account for realistic storm events and 
tide/storm combinations that have not occurred in the limited historical record.  Synthetic events allow 
improved estimation of low-probability events such as the 100-year (1% annual chance) or 1000-year 
(0.1% annual chance) flood, provided the model is well validated against historical data.  

The Stevens ECOM (sECOM) three-dimensional hydrodynamic model (Blumberg et al., 1999; Georgas & 
Blumberg, 2009) has been providing highly accurate storm surge forecasts on its NYHOPS grid 
(http://stevens.edu/ NYHOPS) for over a decade, with mean water level errors of 0.10 m since 2007 
(Georgas & Blumberg, 2009), 0.15 m for Tropical Storm Irene (Orton et al., 2012), and 0.17 m for 
Hurricane Sandy (Georgas et al., 2014). The NYHOPS grid includes the mid-Atlantic and northeastern U.S. 
coastline from Maryland to Rhode Island. For flood hazard assessment studies, the grid is nested inside a 
NW Atlantic model grid that captures the large-scale influence of winds from Nova Scotia to Cape 
Hatteras and out to approximately 2000 km distance offshore. Details of the ocean modeling, including 
drag coefficient parameterization, wave model coupling, and tide forcing, are all summarized in Orton et 
al. (2016). 

TC streamflow hydrographs are modeled using a statistical Bayesian approach (Orton et al., 2018) to 
create streamflows for five tributaries spaced along the Hudson from north to south, and across it east 
to west. The chosen tributaries are the Upper Hudson (above lock 1; 11966 km2), Mohawk (8837 km2), 
Wappinger (469 km2), Rondout (2849 km2), and Croton (935 km2).  The 10th, 50th, and 90th-percentile 
streamflow hydrographs are modeled for each TC, totaling nearly 2000 TC events. Our statistical TC 
streamflow model builds hydrographs in three pieces: (1) peak discharge (Bayesian Simultaneous 
Quantile Regression with TC attributes); (2) timing of the peak (multivariate normal distribution); and (3) 
hydrograph shape (KNN) (Orton et al., 2018). 

For ETCs and WETCs, we use available historical streamflow data along the Hudson and a number of 
tributaries, including the Mohawk, Fort Edward, Hackensack, Passaic, Saddle, Raritan, Manalapan, 
Esopus, Rondout, Wallkill, Wappinger, Rahway, Croton, and Hoosic Rivers. Where only daily data are 
available (typically prior to 1990), the USGS peak flow estimates for major flood events are inserted into 
the time series on the day of the peak, to avoid underestimating peak flows during the storms. For all 
three storm types, ungaged or unmodeled small-to-medium tributaries (the remainder of a total of 52 
Hudson River and New York Harbor region freshwater inputs to the model) are estimated using the 
standard NYHOPS system of estimating streamflows based on nearest similar-sized watersheds and 
scaled by watershed area . 

http://stevens.edu/NYHOPS


Storm-driven increases to streamflow into Long Island Sound are neglected, as they have a negligible 
influence on the peak storm tide at those locations. Completely neglecting streamflows led to a 1% 
reduction in the peak storm tide at Kings Point for Hurricane Irene, in spite of its extreme rainfall (Orton 
et al. 2012).  

To quantify error, we compare modeled water levels for 83 historical events with observations. Plots of 
the validation are given in Appendix 1, and broader details and discussion are provided in Orton et al. 
(2018). For ETCs The Battery root-mean-square error (RMSE) is 0.19 m (30 events), whereas for Albany 
RMSE is 0.14 m (5 events). For TCs, The Battery RMSE is 0.32 m (12 events), whereas at Albany the RMSE 
is 0.54 m (5 events). The validation for the WETC water levels at Albany shows an RMSE of 0.33 (18 
events). Western Long Island Sound (Kings Point) results for ETCs have an RMSE of 0.32m, and for TCs 
have an RMSE of 0.64 m. Accounting for uncertainty in observations and meteorological forcing, which is 
especially large for the most intense storms, the results show that the model is reliable and able to 
represent and quantify the complex hydrodynamics of the storm-induced flows. 

Sea level rise 
The mapping tool presents several sea level rise scenarios as a given, from 6 inches to 72 inches, with no 
context or year estimates of when they might arrive. The high value of 72 inches approximately matches 
the high-end (90th percentile) projections of sea level rise at the year 2100 in the most recent regional 
New York State sea level rise projections from the ClimAID project (71 inches at Troy Dam, 75 inches at 
NYC; Horton et al., 2015). The ClimAID projections account for ocean thermal expansion, local changes 
in ocean height, ice melt from Greenland and Antarctic ice sheets, ice melt from glaciers and ice caps, 
gravitational, rotational, and elastic “fingerprints” of ice loss, vertical land movements, and land-water 
storage (Horton et al., 2015). 

The expected arrival decade for each of the specific values of sea level rise is shown in Table 1, and is 
based on simple computations made using the ClimAID report’s projections.  The table presents the 
uncertainty as the range of decades where there is an 80% chance of seeing the given sea level rise 
occur.  For example, the sea level scenario of 12 inches is expected around the 2040s, and there is 80% 
confidence it will occur between the 2020s and 2070s.  The ClimAID report provides 10th, 25th, 75th, and 
90th-percentile projections of sea level, and here we present low-end, median and high-end scenarios, 
which are 10th, 50th, and 90th-percentile values.  The 50th percentile was estimated from the 25th and 75th 
percentile values by linear interpolation.  To create these decade estimates, the available ClimAID sea 
level projection and year data are fitted with a 2nd-order polynomial, separately for 10th-, 50th-, and 90th-
percentile sea level rise scenarios; then, exact years are taken from the fitted curves. In the table, the 
years are rounded to the nearest decade, and cases where the scenario would be reached after 2100 are 
shown as “>2100”, because the ClimAID projections are not intended to be extrapolated beyond their 
end date of 2100.   

There is a relatively small difference of 4 inches by 2100 in vertical land movements between areas to 
the south and north along the Hudson (NYC is slowly sinking, Albany is not, owing to post-glacial vertical 
land movements lasting thousands of years; e.g. Peltier, 2004). However, we are neglecting this because 
it is beyond the resources of this study to map and impose the spatially varying landscape change. We 



use the higher sea level rise numbers for NYC to build Table 1, conveying the scenario with a slightly 
more rapid sea level rise. 

 

Table 1:  Expected years for each sea level rise scenario, based on median, low-end (10th-percentile), and 
high-end (90th-percentile) sea level rise projections of sea level rise over NOAA’s 1983-2001 mean sea 
level datum (centered on 1992).  

 

sea level rise 
low-end 
scenario 

Median 
scenario 

high-end 
scenario 

Inches Year Year Year 
0 1992 1992 1992 
6 2030s 2020s 2010s 

12 2070s 2040s 2020s 
18 >2100 2050s 2030s 
24 >2100 2070s 2040s 
30 >2100 2080s 2050s 
36 >2100 2090s 2060s 
48 >2100 >2100 2070s 
60 >2100 >2100 2080s 
72 >2100 >2100 2090s 

 

 

The vertical datum are important for flood mapping.  The ClimAID projections are sea level change over 
the 2000-2004 mean sea level for NYC, so to correct these to the NOAA datum of 1983-2001 mean sea 
level (with a mid-point of 1992 used in Table 1) we add 1.1 inches (10 years of sea level rise at the 
historical average rate at NYC).  

Flooding from tides with sea level rise 
Tidal flooding is quantified with three-dimensional hydrodynamic simulations of tides using the NYHOPS 
forecasting system’s operational setup, under tide and mean streamflow forcing (no wind). Simulations 
cover a 35-day period beginning August 1, 2015. This approach for modeling tides to estimate tide 
datums with sea level rise was recently used in studies of Long Island Sound and Jamaica Bay. It gives 
accurate estimates of tidal datums when compared to multiple years of local tide gauge observations 
(Fischbach et al., in preparation; Kemp et al., 2017; Smith et al., in preparation). Model results are 
subjected to tidal harmonic analysis (Pawlowicz et al., 2002), to fully represent 19-year tidal variability 
and all the periodicities therein. Resulting Mean Higher-High Water (MHHW; the average daily high tide 
level) estimates are bias-corrected to observation-based MHHW estimates at 11 stations along the 
Hudson from Westchester County northward (Georgas et al., 2013) and 2 stations in Western Long 
Island Sound (NOAA, 2017). The biases for the zero sea level rise case are then applied to all results for 



the 10 sea level rise scenarios. A more detailed description of methods, bias correction and model-
observation comparisons is included in Appendix 1. 

 

 

Figure 4:  Flood return period curves – black lines show the combined flood hazard assessment, merging 
exceedance probabilities from TCs, ETCs, and WETCs, and grey areas show 95% confidence intervals 
(Battery and Kings Point only show TCs and ETCs because WETCs had a negligible impact). Note different 
y-axis scales. 

 

Flood Scenarios: Results 

Storm tides with sea level rise 
Each type of storm is separately modeled and flood return periods statistically evaluated, including 95% 
confidence intervals. Monte Carlo methods are used to assess the propagation of model error through 
the analysis, and bootstrap methods are used for re-sampling storms to incorporate the uncertainty of 

Albany 

Battery 

Poughkeepsie 

Kings Point 



the limited ETC and WETC storm sets (Orton et al., 2016). Detailed results for model validations, flood 
levels and uncertainties from each type of storm are given in Orton et al. (2018). 

Flood exceedance probabilities for each type of storm are merged to create the combined flood 
exceedance curves, representing the return period for any type of flooding along the Hudson. Similar 
data are available for all grid cells within the model domain.  The curves show that Albany results are 
dominated by WETCs (Figure 4).  Poughkeepsie results show a flood hazard that is a mixture of all three 
storm types. NYC results at both The Battery and Kings Point show a dominance of TCs for the 100-year 
flood, and ETCs for the 10-year flood.   

 

 

Figure 5:  Change in water level for various amounts of sea level rise for (left) Poughkeepsie for ETCs, 
and (right) for NYC (Battery) for TCs. In both cases, model results are very close to the static assumption 
(simple superposition of water level and sea level rise), and this is also the case for TCs at Poughkeepsie 
and ETCs at NYC (Orton et al., 2018).  

 

However, the results at Albany show large deviations from a simple static sea level rise approach (Figure 
6). Water levels for WETCs are below the static assumption and water levels for ETCs are above the 
static assumption.  The WETC result occurs because a deeper river has less of a frictional effect on a 
flood, which favors the escape toward the ocean of the river floodwater. That is, the sea level rise 
may cause higher water, but it also ameliorates the floodwater pulse, and ultimately, the total is less 
than the sum of the two.  The ETC result likely occurs for a similar reason, though flipped around – 
ocean tides (and surge) are propagating over 200 km up the Hudson through deepened water due to sea 
level rise, and therefore have less frictional damping and are larger once they reach Albany (Orton et al., 
2018).    

Poughkeepsie ETCs NYC (Battery) TCs 



Tides with sea level rise 
Results for the MHHW tidal datum demonstrate how sea level rise can increase tidal water levels, and 
again there are cases with deviations from static superposition.  Figure 7 shows the “nonlinear sea level 
rise”, which is the modeled flood level above simple superposition of tidal MHHW and sea level rise.  
The resulting nonlinear sea level rise is generally zero or positive, indicating that floods are higher than 
superposition would predict – as much as 20 cm at some locations (~11% of the sea level rise).  A similar 
pattern is seen across all sea level rise scenarios, and is exemplified by the cases shown in Figure 4 (0.91 
and 1.83 m). These show nonlinear sea level rise contributions of about +2% at the seaward end of the 
Hudson and about +10% in the upper half of the tidal Hudson. 

 

 

Figure 6:  Change in water level with various amounts of sea level rise at Albany, for (left) WETCs and 
(right) ETCs. For WETCs, water levels are lower than the static sea level rise assumption. For ETCs, water 
levels are higher than that static assumption (Orton et al., 2018). 

 

These results are unsurprising, given the similar finding for ETCs in the existing data report’s figure 6 
right-side panel. Under cases with low or mean streamflows, sea level rise deepens the water column, 
enabling decreased tidal frictional dissipation or enhanced reflection at the head-of-tide (Troy, NY), and 
as a result the modeled combination of storm tide (or simply tide) plus sea level rise is higher than their 
sum. 

  

 

 

Albany WETCs Albany ETCs 



 

Figure 7:  “Nonlinear sea level rise” – the modeled flood level above simple superposition of tidal 
MHHW plus sea level rise (above static sea level rise).  The top panel shows the result for sea level rise 
of 0.91 m, and the bottom panel for sea level rise of 1.83 m.  Values are generally zero or positive, 
indicating that floods are higher than superposition would predict – as much as 20 cm at some locations 
(~11% of the sea level rise). 

 

  



Mapping 
LiDAR data from NYSDEC is used at 1 meter horizontal pixel resolution. We consider the maximum range 
of still water elevation (SWEs) estimates across the full set of modelled flood scenarios in order to 
determine the maximum depth of flooding, which is approximately 12 vertical meters. We next subset 
the LiDAR data in order to remove any elevation pixels with a value greater than 12 meters. This forms 
the maximum possible extent of the flood plain used for bathtub modeling. 

 

Figure 7:  Maps of the density and depth of estimate points from the Stevens NYHOPS domain. 

 

The bathtub method is implemented by first interpolating the SWEs estimate points depicted in Figure 7 
onto the <12 meter maximum flood plain extent. A radial basis function is applied to the SWE estimate 
points in order to create interpolated surfaces. Finally, the interpolated scenarios are subtracted from 
the LiDAR ground elevation in order to derive flood depths. 

The bathtub process results in the selection of some low-lying areas that are not surficially connected to 
the river channel according to the LiDAR data. However, these areas may still be at risk of flooding if 
they are connected below ground naturally or through man-made infrastructure such as culverts. Rather 
than remove these areas from the final flood scenario data, they are recoded as “Possible Flooding – 
Disconnected.” Additional research is needed to determine if there is, in fact, hydrologic connectivity in 
these areas.  



Social Vulnerability 
The social vulnerability index is a multidimensional measure that identifies block groups and 
municipalities along the Hudson River with a high likelihood of sustaining losses from, or an insufficient 
capacity for resilience toHudson River flood hazards.  

Constructing the indicator was a multi-step process. First, we looked at past literature to identify the 
diverse dimensions of vulnerability relevant to the study area. Second, we identified quantifiable 
measures for each of the sub-dimensions of vulnerability. As seen in Appendix 2, the number of 
variables used to measure each vulnerability dimension varies, mainly because of data availability. A 
more detailed discussion regarding the variable selection is presented below. Third, we created the 
index using the following processes: cleaning the data; transforming  the data when necessary to ensure 
data completeness; normalizing data; reducing the data to a select few complex dimensions of 
vulnerability using principal component analysis; and calculating the social vulnerability index using two 
different aggregation methods.  

Theoretical framework 
The theoretical framework of our index is based on the dimensions of vulnerability that are most 
commonly found in the literature: social characteristics, economic status, isolation, and health (Cutter et 
al., 2003). Appendix 2 presents a description of the framework including the dimensions and sub-
dimensions of vulnerability, along with the variables used for measuring each dimension.  

Social Characteristics 
We focused on social characteristics of vulnerability in which the ascribed social status is assigned at 
birth or assumed involuntarily later in life, including race/ethnicity, age, and gender. Language can also 
affect access to necessary information pre- and post-disaster, as well as access to post-disaster funding. 
Cultural barriers can influence people’s decisions during a disaster event and may also be a vulnerability 
factor. Underrepresented minorities are historically more likely to experience losses from disaster 
events. Looking at vulnerability based on age, the elderly population may experience obstacles in both 
mobility and access to information. Young people have a different type of vulnerability due to 
dependency on caregivers during the time of disaster. Families with young children, particularly female-
headed households, are likely to be more vulnerable post-disaster when parents cannot find available 
childcare.  

Economic status 
Differences in economic status expressed in variables like poverty level, occupation, housing, and 
education have a large impact on preparedness and response to a disaster. People living in poverty 
before a disaster lack the necessary resources for recovery. Among low-income households, at greater 
risk are populations with vulnerable social status (children, the elderly, underrepresented minorities, 
and women). Economic status is influenced by education, as low education achievement can lead to 
low-paying jobs and fewer resources for recovery post-disaster. The type of housing is also important: 
renters may not be able find shelter post-disaster, according to Cutter et al. “People that rent do so 
because they are either transient or do not have the financial resources for home ownership. They often 
lack access to information about financial aid during recovery. In the most extreme cases, renters lack 



sufficient shelter options when lodging becomes uninhabitable or too costly to afford”. Additionally, the 
number of people impacted by a disaster is generally higher for multi-family buildings. 

Isolation 
The likelihood of loss of transportation infrastructure is high during disaster events, thus the level of 
isolation will influence post-disaster recovery. Access to public or personal transportation, distance to 
work, and access to phone communication greatly influence the extent of loss during and post disaster. 

Health 
Access to health care facilities is of most importance during disaster events, and has great impacts on 
loss or capacity of recovery after the event. 

Variable selection 
After identifying vulnerability dimensions, we collected variables that measure each of these thematic 
categories. In accordance with previous similar analyses, our main data source of proxy measures for the 
vulnerability dimensions stated above was the American Community Survey (ACS) conducted by the US 
Census Bureau. For this analysis we used the 2007-2011 ACS results, which are available in tabular and 
spatial format (i.e. polygon). In addition, a few isolation and health measures were processed by CIESIN 
based on infrastructure data available from ESRI.  

At different stages of the analysis, our dataset included varying numbers of input variables. The 31 
variables that were finally included were the best at measuring the dimensions and sub-dimensions of 
vulnerability listed in Appendix 2. 

Indicator construction 
The data includes only New York State counties along the lower Hudson River north of New York City: 
Albany, Columbia, Dutchess, Greene, Orange, Putnam, Rensselaer, Rockland, Ulster, and Westchester. 

The analysis was conducted at both the block group and municipality level in order to make comparisons 
based on both sets of administrative units. 

Data cleaning 
First, the raw tabular datasets were cleaned and prepared for use. The spatial database included 2,116 
block groups, from which we omitted 4 block groups with no population, 10 block groups with no 
households and 1 block group with no per capita income. The same input data could then be divided 
into 162 municipalities across the 10 counties.  

Data transformation and normalization 
The raw data values for the 2,101 remaining block groups and 162 municipalities were transformed by 
dividing by the total population of interest in order to make the data comparable across counties. In 
addition, per capita income was inverted to ensure that low values correspond to high incomes which 
represent low vulnerability, and high values correspond to low incomes which represent high 
vulnerability. The calculation used for each of the variables is presented in the last column of Appendix 
2. 



Some of the block groups may have zero population of a given variable of interest, which could 
potentially lead to missing values. For example, the “percent of the population over 65 living alone” 
variable is calculated by dividing the population over 65 living alone by the total population over 65. In 
our dataset, there were 19 block groups with no population over 65 years old. These block groups were 
considered to have low vulnerability for this variable, therefore the 19 missing values were recoded as 
zero which is the lowest vulnerability value. This type of transformation was not necessary at the 
municipal level.  

Finally, we normalized the variables by centering (extracting the mean) and scaling (dividing by standard 
deviation). As a result, the variance of each of the variables included in the analysis is one, and the total 
variance in the dataset is 31 (equal to the total number of variables in the dataset). 

Data reduction 
We used principal component analysis (PCA) to reduce the number of variables to a set of uncorrelated 
latent components that keep most of the variance of the original variables. At the block group level, the 
first five components resulting from the PCA algorithm explain 51.44% of the variation in the 31-variable 
dataset, while at the municipal level the variance explained by the same number of components is 
62.99%. There are several methods used in the literature with regard to the PCA component selection: 
Keiser criterion, Horn parallel analysis, the percentage of variance explained, and expert choice. We 
used the percentage of variation explained to select the first five components (see Appendix 3, column 
3 for block group level, and Appendix 4, column 3 for municipal level). 

We named remaining components according to the dominant variables within each component. The 
dominant variables were determined from variable loadings, which are equivalent to correlation 
coefficients (see Appendix 3, last column for block group level, and Appendix 4, last column for 
municipal level). Values closer to 1 represent high vulnerability, while those closer to -1 represent low 
vulnerability. In some cases, the high-vulnerability components were loading with negative values (see 
dimensions 1 and 5 for municipal level); therefore, we inverted the values so that high values represent 
high vulnerability. In other cases we noticed a strong relationship on both negative and positive sign, 
and we calculated the absolute value of that variable. For example, median age and the percentage of 
population over 65 living alone load positively on Housing and Age dimension (block group level), while 
population under 5 loads negatively.  

Output vulnerability dimensions 
Each of the five dimensions of social vulnerability was constructed based on a combination of 
vulnerability aspects present in the input data. The first output dimension of vulnerability, deprivation, 
has elements that correspond to housing, poverty, and isolation, and explains 28% of the original 
variance at the block group level (31.55% for the municipal level). 

Isolation is the second social vulnerability dimension resulting from PCA, and explains 7.56% of the 
variance at the block group level, with public transportation and long work commute as the most 
significant variables. At the municipal level, the second dimension,“Isolation and thnicity” is more 



complex, and explains ~15% of variance. Along with isolation elements, it is also correlated with 
ethnicity and housing variables. 

The third dimension of social vulnerability is Housing and Age, which captures youth and elderly 
vulnerability and housing structure. It explains 6.35% of the variance at the block group level (6.10% at 
the municipal level). 

The remaining two dimensions represent different combinations of variables for block groups and 
municipalities and explain variance less than the first three. For block groups, the Ethnicity and 
Occupation dimension includes variables on underrepresented minorities, employment, and isolation, 
and the Dependency dimension is a mix of age, race, education, housing, gender, and unemployment. At 
the municipal level, the Dependency dimension appears with a similar mix, and is higher in importance 
(4th component). Remoteness accounts for isolation and health access. 

Aggregation 
Most previous social vulnerability studies aggregated the principal components using an additive 
method (Tate, 2012). The method is simply summing up all the principal components. For the second 
aggregation method, we used the eigenvalues (variance) of each component as a weight. 

Social Vulnerability equation – block group level: 
Additive method: 

SOVI =PC1 + PC2 + abs(PC3) + PC4+abs(PC5) 

Weighted method: 

SOVI_w = PC1 * (PC1 eigenvalue) + PC2* (PC2 eigenvalue) + abs(PC3) * (PC3 eigenvalue) + PC4* (PC4 
eigenvalue)+ abs(PC5) * (PC5 eigenvalue) 

Social Vulnerability equation – municipal level: 
Additive method: 

SOVI = (-1)*PC1 + PC2 + PC3 + abs(PC4) +(-1)*PC5 

Weighted method: 

SOVI_w = (-1)*PC1 * (PC 1 eigenvalue) + PC2 * PC2 eigenvalue + PC3* (PC 3 eigenvalue) + abs(PC4) * (PC 
4 eigenvalue) +(-1)*PC5* (PC5 eigenvalue) 

 

abs() represents absolute value. 

The subscript w indicates the weighted SOVI score. 



A set of impact estimates accompany each of the flood scenarios presented in the Mapping Tool. The 
impacts are divided into three sets of results: Critical Infrastructure (including estimated losses), Climate 
Smart Communities, and Social Vulnerability. 

Impact Estimates 
A set of impact estimates accompany each of the flood scenarios presented in the Mapping Tool. The 
impacts are divided into three sets of results: Critical Infrastructure (including estimated losses), Natural 
Resilience, and Social Vulnerability. 

Version 2.2 of the FEMA-developed HAZUS-MH Flood model was generalized for automation of 90 
divergent Sea Level Rise and Storm Tide scenarios using user-defined data for building stock and flood 
depths. Analysis was completed at the building footprint level and then aggregated to block groups, 
municipalities, and counties. Tax parcel data was converted into HAZUS-MH building occupancy classes 
and assigned to building footprints. Where tax parcel data on required attributes was not available, 
block level data from HAZUS-MH was used to infill building footprint attributes. Depth Damage 
Functions were then applied to each building before aggregation. The resulting output statistics include 
the number of damaged buildings, as well as the estimated financial loss associated with the flood 
event. 

Critical Infrastructure 
Our geographic database of critical infrastructure consists of a variety of structures at risk from flood 
events including: 

airports, boat launches, bridges, bus routes, bus stations, dams, DEC roads trails, EIA power plants, 
emergency operations centers, EMS, fire stations, heliports, hospitals, large culverts, linear hydrography, 
nursing homes, places of worship, police stations, power transmission lines, prisons, public libraries, 
railroad junctions, railroad passenger stations, railroads, schools, SPDES wastewater sites, water wells, 
and water withdrawal locations. 

Impacts to critical infrastructure were calculated using an overlay analysis of each of the flood scenario 
surfaces. For point data, a facility was considered impacted if and when it was intersected by any 
amount of flooding (i.e., in the flood zone) for a particular scenario. For line data, the linear section of 
the feature intersected by flooding was calculated and is presented in the mapping tool and the 
statistical download files. 

Natural Resilience Features 
Natural areas like forests, wetlands, and floodplains are vital assets to consider in assessing vulnerability 
and planning for resilience. In contrast to impervious surfaces in developed areas, these natural features 
retain, slow, filter, and infiltrate water to the soil, reducing erosion and flood impacts. Conserving and 
managing natural assets is thus an important resilience strategy. 



Descriptive statistics of several spatial data sets for natural features are summarized at the municipal 
level and in the area estimated to be impacted by the selected flood scenario. Impervious surface area is 
also described.  

Large, intact forests, wetlands, and floodplains that provide connectivity between natural areas are 
most likely to maintain natural processes contributing to resilience and will facilitate the migration of 
plants and animals as climate changes. Used together with the ecology and infrastructure layers, these 
results allow you to analyze spatial patterns and to locate areas of particular vulnerability as well as 
natural areas of greatest importance to slow and store water during a flood. 

The variables summarized for each scenario and location include: 

• Total land area(acres) 
• Total forest (acres)  
• Percent forested (%) 
•  Total NWI wetlands (acres) 
• Total tidal wetlands (acres)  
•  Total impervious surface area (acres) 
•  Percent impervious (%) 
•  Inundated land area in this scenario (acres) 
•  Inundated forest(acres) 
•  Inundated NWI wetlands (acres) 
•  Inundated impervious surface area (acres) 

 

Social Vulnerability 
The Social Vulnerability Index (SoVI) was developed to map populations at risk from predicted flood 
events and is described fully in the Social Vulnerability section of this report. 

The impact estimates for this thematic area include the decile rank of the impacted block groups in each 
municipality for each component of the index and the average rank of all of the blocks in each 
municipality.  A high ranking indicates high vulnerability, while a low ranking indicates low vulnerability. 

Used together with the social vulnerability layers, the results allow for a comparison of vulnerabilities 
both within a municipality and against other municipalities. 

Climate Smart Communities Flood Adaptation Guidance 
The variables highlighted in this section appear in the map application and are emphasized here on the 
basis of recommended flood adaptation strategies in the New York State Department of Environmental 
Conservation (NYSDEC) Climate Smart Communities Certification Manual 
(http://www.dec.ny.gov/energy/50845.html). The Certification Manual outlines steps municipalities can 
take to reduce flood risk and identify and protect important natural features contributing to community 
resilience. Refer directly to “Pledge Element 7” of the Climate Smart Communities Certification Manual 
for more information.  
 

http://www.dec.ny.gov/energy/50845.html


Dams  
Old or improperly maintained dams can present a flooding hazard to the surrounding communities in 
the event of dam failure or intense precipitation.  
 
Adaptation Strategy - Remove unnecessary and hazardous dams.  
 
Bridges and Culverts  
Improperly sized culverts and bridges can contribute to localized flooding near stream-road crossings, 
and present a hazard to the community if they are routinely overtopped or blowout.  
 
Adaptation Strategy - Right-size bridges and culverts to provide suitable capacity in flood events and 
ensure proper installation to allow fish passage.  
 
Impervious Surface  
Impervious surfaces such as roofs, roads, parking lots, and other paved areas dramatically increase and 
change the timing of stormwater runoff, often exacerbating local flooding. 
 
Adaptation Strategy – Concentrate new development in existing centers, reduce impervious surfaces, 
and use green infrastructure practices to reduce stormwater runoff.  
 
Forest Cover 
Forests are very effective at limiting stormwater runoff by intercepting precipitation and promoting 
infiltration to the soil. In addition, riparian forests dissipate flood energy. 
Large, intact, connected forests contribute to ecosystem resilience and facilitate migration of plants and 
animals.  
 
Adaptation Strategy - Avoid further fragmentation and loss of function or integrity of forests, restore 
forest along streams and in floodplains, and conserve or restore broad linkages between forest patches 
to facilitate species migration.  
 
Wetlands 
Both tidal and non-tidal wetlands can absorb and hold large quantities of water, filtering and slowly 
releasing it, reducing flood impacts and improving water quality. Tidal wetlands also help to buffer 
impacts from storm surge and provide critical habitat for estuary fish and wildlife species.  
 
Adaptation Strategy – Avoid further wetland loss and conserve wetland buffers to protect wetland 
function and integrity. Conserve or restore linkages between wetlands and potential future tidal zones 
to facilitate species movement and tidal wetland migration. 
 
Floodplains 
By slowing and storing floodwaters, floodplains reduce downstream flood damage and serve as a safety 
zone between human settlement and the damaging impacts of floods.  

Adaptation Strategy – Conserve and revegetate floodplains and other streamside (riparian) buffers. It is 
also critical to ensure that streams are connected to their floodplains, so that floodwaters have a place 
to go. Remove berms, levees or other built barriers that block floodwaters from accessing floodplains to 
allow those areas to once again collect, store and slow water movement during and after storm events. 



Important Areas for Rare Plants, Rare Animals, and Significant Natural Communities 
Many natural systems and the benefits they provide people are at risk due to climate change and other 
stressors. Large, natural areas with diverse physical conditions and little fragmentation by roads or 
development are most likely to maintain diverse ecosystems and ecological processes contributing to 
resiliency. The New York Natural Heritage Program has identified important areas for sustaining known 
populations of rare plants, rare animals, and significant natural communities based on habitat 
requirements and areas critical to maintaining those habitats. 
 
Adaptation Strategy - Conserve natural areas for species migration and ecosystem resilience  
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Appendix 1.  Detailed Methods and Model Validations 

Storm flood modeling validations 
Comparisons of historical observed and modeled temporal maximum water levels are shown for each 
storm type in Figure A1, generally showing good agreement and helping quantify model error for our 
uncertainty analysis. In each case, the actual streamflows and meteorological forcing methods used in 
the probabilistic assessment are utilized. In the case of the TCs, synthetic streamflows at the same 
percentile of the actual historical event for each river basin were used, and these were created using 
out-of-sample statistical modeling (Orton et al., 2018). A second figure shows the additional validation 
performed for storm modeling results at western Long Island Sound (Figure A2). 

 

 

Figure A1:  Model-observation comparisons for peak water levels for the three storm types using 
available data along the Hudson River (Orton et al., 2018). 

 

Figure A2:  Model-observation comparisons for ETCs (left) and TCs (right) at western Long Island Sound 
(Kings Point and neighboring Willet’s Point for older storms).  



Tidal flood assessment 
Three-dimensional hydrodynamic simulations of tides were performed using the NYHOPS forecasting 
system’s operational setup under tide and streamflow forcing (no wind), covering a 35-day period 
beginning August 1, 2015This approach for modeling tides was used recently in studies of Long Island 
Sound and Jamaica Bay, and it gives accurate estimates of tidal datums when compared to multiple 
years of local tide gauge observations (Fischbach et al., in preparation; Kemp et al., 2017; Smith et al., in 
preparation). Model results were subjected to tidal harmonic analysis (Pawlowicz et al., 2002), to fully 
represent 19-year tidal variability and all the periodicities therein. Resulting Mean Higher-High Water 
(MHHW) estimates were bias-corrected to observation-based MHHW estimates at 11 stations along the 
Hudson from Westchester County northward (Georgas et al., 2013) and 2 stations in Western Long 
Island Sound (NOAA, 2017). The biases for the zero sea level rise case were then applied to all results for 
the 10 sea level rise scenarios. 

The 35-day tide simulations on the NYHOPS grid were used because the approach eliminated the need 
for the extremely time- and CPU-intensive high-resolution year-long simulations for each sea level rise 
scenario, yet the 68 simulated tidal cycles capture the dynamic combination of “mean” streamflow with 
tides, water column stratification and sea level rise. The model’s streamflow inputs from all 52 
freshwater sources into the Hudson (519 sources in total across the entire model domain; Georgas, 
2010; Orton et al., 2012) were temporally constant and taken from the operational system for August 
22, 2011, a day that exhibited stable, near-mean streamflow values. For example, the streamflow into 
the tidal Hudson at Troy was 400 m3/s, whereas the mean at that location in 2010 (used for annual tide 
simulations in Georgas et al. 2013) was 455 m3/s and the median was 340 m3/s. Mean and median 
values for this location for the period 1989-2013 were 440 and 330 m3/s, respectively (USGS, 2014), but 
this value varies over time and for the period 1980-2004 the mean was 400 m3/s (Orton & Visbeck, 
2009). The first two days of the simulation were discarded prior to performing data analysis, as is 
common due to relatively erratic tide spin-up conditions. 

A resulting comparison of observation-based and model-based tide datums is shown in Figure A3, and 
demonstrates a high degree of accuracy. The MHHW biases across all stations averaged +0.06 m, with 
maximum of 0.14 m at Schodack Island (latitude 42.504 °N). The biases along the Hudson were fitted 
with a shape-preserving spline (Figure A4) and corrections to the model results applied simply as a 
function of latitude. For latitudes above Albany (42.65 °N), a constant bias value was extrapolated. A 
spatially-constant bias value of -0.004 m is used for western Long Island Sound, the mean of the Willet’s 
Point and Kings Point values which are both within +/- 0.01 m of that value. Relative to a Hudson River 
mean present-day depth of about 10 m plus sea level rise scenarios up to 1.83 m (6 ft), these biases will 
have a negligible effect on the dynamics and resulting MHHW estimates. 

 

 

 

 



 

Figure A3:   Comparison plot for tide datums based on observations versus model, including Mean 
Lower-Low Water, Mean Sea Level, and MHHW at 13 Hudson River stations from Battery to Albany 
(black) and Western Long Island Sound stations (blue). 

 

Figure A4:  Latitudinal dependence of bias in MHHW along the tidal Hudson River, computed as 
MHHW_model minus MHHW_observations, and fitted using a shape-preserving spline.  For latitudes 
above Albany (42.65), a constant bias value was extrapolated.   



Appendix 2. The Variable Framework of the Social Vulnerability Index. The codes used in the last 
column represent Census variables used for the analysis. 

Dimension of  

social 

vulnerability  

Sub-

dimensions 
Variable code Variable name Source 

Census 

level 
Calculation 

Social status Ethnicity 

africanampop 

Percent of 

African 

American 

Population 

ACS 
Block 

group 
B02001e3 / B02001e1 * 100 

hisplatpop 

Percent of 

Hispanic/Latino 

Population 

ACS 
Block 

group 
B03002e12 / B03002e1 * 100 

otherracepop 

Percent of 

people of race 

other than 

White, 

Hispanic, 

African 

American 

ACS 
Block 

group 
B02001e7 / B02001e1 * 100 

speakengnotwell 

Percent of 

Population 

Speaking 

English Less 

than very Well 

ACS 
Block 

group 

(B16004e7 +B16004e8 + B16004e12 +B16004e13+B16004e17+  

B16004e18+B16004e22+B16004e23+B16004e29+B16004e30+

B16004e34+B16004e35+B16004e39+B16004e40+B16004e44+

B16004e45+B16004e51+B16004e52+B16004e56+B16004e57+

B16004e61+B16004e62+B16004e66+B16004e67) / [B01001e1-

(B01001e27+B01001e3) * 100]*100 

 



Appendix 2 (cont.) 

Dimension of  

social 

vulnerability  

Sub-

dimensions 
Variable code Variable name Source 

Census 

level 
Calculation 

Social status 

Age 

popunder5  

Percent of 

Population 

Under 5  

ACS 
Block 

group  
(B01001e3+B01001e27) / B01001e1 * 100 

popover65 

Percent of 

Population  65 

and Over 

ACS 
Block 

group  

(B01001e20+B01001e21+B01001e22+B01001e23+B01001e24+ 

B01001e25+B01001e44+B01001e45+B01001e46+B01001e47+ 

B01001e48+B01001e49) / B01001e1 * 100 

ov65livealone 

Percent of 

People over 65 

Living Alone 

ACS 
Block 

group  
(B09017e17+B09017e14) / B09017e1 * 100 

medage Median age ACS Tract DP5_HC01_VC21 

Gender femalesingleparhh 

Percent of 

Female Single 

Parent 

Households 

ACS 
Block 

group   
B09002e15 / B09002e1 * 100 

 



Appendix 2 (cont.) 

Dimension of  

social 

vulnerability  

Sub-

dimensions 
Variable code Variable name Source 

Census 

level 
Calculation 

Economic 

status 
Poverty 

femalehhpoverty 

Percent Female 

Households 

Living in 

Poverty 

ACS 
 Block 

group  
(B17017e44  +  B17017e55) / B17017e31 * 100 

livinpoverty 

Percent of 

Population 

Living in 

Poverty 

ACS 
Block 

group  
B17021e2 / B17021e1 * 100 

ov65poverty 

Percent of 

Population over 

65 Years Old 

Living in 

Poverty 

ACS Tract DP3_HC03_VC173 

childpov 

Percent of 

children living 

in poverty 

ACS Tract DP3_HC03_VC168 

snapbenefitshh 

Percent of 

Households 

receiving SNAP 

Benefits 

ACS Tract DP3_HC01_VC99 / DP3_HC01_VC74 * 100 

 

  



Appendix 2 (cont.) 

Dimension of  

social 

vulnerability  

Sub-

dimensions 
Variable code Variable name Source 

Census 

level 
Calculation 

Economic 

status 

Poverty percapincomei 

Per Capita 

Income 

(inverse) 

ACS 
Block 

group  
1/B19301e1 

Employment 

civlabforceunemp 

Percent of 

civilian labor 

force that is 

unemployed 

ACS 
Block 

group  
B23025e5 / B23025e1 * 100 

workinghome 

Percent of 

people working 

from home 

ACS 
Block 

group  
B08301e21 / B08301e1 * 100 

civiltransocc 

Percent of 

Employment in 

Transportation 

ACS 
Block 

group   
(C24010e34 + C24010e70) / C24010e1 * 100 

civilservocc 

Ratio of 

Employment in 

Service 

Industries 

ACS 
Block 

group   
(C24010e19 + C24010e55) / C24010e1 * 100 

Education pop25nohsdiploma  

Ratio of 

Population Over 

25 With No 

High School 

Degree 

ACS 
Block 

group  
(B15002e10 + B15002e27) / B15002e1*100 



Appendix 2 (cont.) 

Dimension of  

social 

vulnerability  

Sub-

dimensions 
Variable code Variable name Source 

Census 

level 
Calculation 

Economic 

status 
Housing 

grossrentmor35 

Percent of 

Housing units 

with a rent of 35 

percent or more  

ACS Tract DP4_HC03_VC197 

mortggreat35 

Percent of 

Housing units 

with a mortgage 

of 35 percent or 

more  

ACS Tract  DP4_HC03_VC171 

great20units 

Percent of 

Structures with 

20 or more 

Units 

ACS 
Block 

group 
(B25024e8 + B25024e9) / B25024e1 * 100 

singleunit 
Ratio of Single 

Unit  Structures 
ACS 

Block 

group 
B25024e2 / B25024e1 * 100 

 

  



Appendix 2 (cont.) 

Dimension of  

social 

vulnerability  

Sub-

dimensions 
Variable code Variable name Source 

Census 

level 
Calculation 

Isolation 

Social and 

spatial 

distance 

pubtransp 

Percent use of 

public 

transportation to 

the workplace 

ACS 
Block 

group  
B08301e10 / B08301e1 * 100 

travtimemore60 

Percent of 

Population with 

Travel Time to 

Work greater 

than 60 minutes 

ACS 
Block 

group  
(B08303e12 + B08303e13) / B08303e1 * 100 

novehicle 

Percent of 

Housing Units 

with No Vehicle 

ACS 
 Block 

group   
(B25044e3 + B25044e10) / B25044e1 * 100 

nophone 

Ratio of 

Housing Units 

with No Phone 

ACS Tract DP4_HC03_VC105 

dist2bus Distance to bus ESRI 
Block 

group   
  

dist2school 
Distance to 

school 
ESRI 

Block 

group 
  

Health   dist2hosp 

Distance to 

health care 

centers 

ESRI 
Block 

group  
  



Appendix 3. Dimensions of Social Vulnerability based on PCA - Block Group Level 
Dimension of  

social 

vulnerability 

Sign 

Adjustment 

Variance 

explained 

Variance 

(eigenvalues) 

Dominant variables (variable 

codes, in order of importance) 
Variable names Loadings 

Deprivation + 27.96% 8.67 

rentoccup Percent of Renter Occupied Units 0.285 

novehicle Percent of Housing Units with No Vehicle 0.284 

snapbenefitshh Percent of Households receiving SNAP Benefits 0.273 

livinpoverty Percent of Population Living in Poverty 0.267 

childpov Percent of children living in poverty 0.265 

ov65poverty 
Percent of Population over 65 Years Old Living 

in Poverty 
0.211 

femalehhpoverty Percent Female Households Living in Poverty 0.189 

nophone Ratio of Housing Units with No Phone 0.164 

percapincomei Per Capita Income (inverse) 0.142 

Isolation + 7.56% 2.34 

pubtransp 
Percent use of public transportation to the 

workplace 
0.423 

travtimemore60 
Percent of Population with Travel Time to Work 

greater than 60 minutes 
0.323 

 

  



Appendix 3 (cont.) 

Dimension of  

social 

vulnerability 

Sign 

Adjustment 

Variance 

explained 

Variance 

(eigenvalues) 

Dominant variables (variable 

codes, in order of importance) 
Variable names Loadings 

Race and 

language 
|| 6.35% 1.97 

great20units Percent of Structures with 20 or more Units 0.361 

ov65livealone Percent of People over 65 Living Alone 0.352 

speakengnotwell 
Percent of Population Speaking English Less 

than very Well 
-0.292 

popunder5  Percent of Population Under 5  -0.275 

singleunit Ratio of Single Unit  Structures -0.246 

medage Median age 0.226 

Family 

structure and 

age 

+ 5.44% 1.68 

otherracepop 
Percent of people of race other than White, 

Hispanic, African American 
0.350 

hisplatpop Percent of Hispanic/Latino Population 0.337 

civiltransocc Percent of Employment in Transportation 0.318 

civilservocc Ratio of Employment in Service Industries 0.286 

dist2hosp Distance to health care centers 0.204 

dist2school Distance to school 0.158 

 

  



Appendix 3 (cont.) 

Dimension of  

social 

vulnerability 

Sign 

Adjustment 

Variance 

explained 

Variance 

(eigenvalues) 

Dominant variables (variable 

codes, in order of importance) 
Variable names Loadings 

Dependency || 4.13% 1.28 

popover65 Percent of Population  65 and Over -0.438 

pop25nohsdiploma  
Ratio of Population Over 25 With No High 

School Degree 
-0.354 

mortggreat35 
Percent of Housing units with a mortgage: of 35 

percent or more  
-0.342 

africanampop Percent of African American Population 0.316 

civlabforceunemp 
Percent of civilian labor force that is 

unemployed 
0.293 

femalesingleparhh Percent of Female Single Parent Households 0.253 

  



Appendix 4. Dimensions of Social Vulnerability based on PCA - Municipal Level 
Dimension of  
social 
vulnerability 

Sign 
Adjustment 

Variance 
explained 

Variance 
(eigenvalues) 

Dominant variables (variable 
codes, in order of importance) Variable names Loadings 

Deprivation - 31.55% 9.78 

novehicle Percent of Housing Units with No Vehicle -0.287 
rentoccup Percent of Renter Occupied Units -0.277 

livinpoverty Percent of Population Living in Poverty -0.244 

snapbenefitshh Percent of Households receiving SNAP Benefits -0.241 

femalesingleparhh Percent of Female Single Parent Households -0.240 

childpov Percent of children living in poverty -0.237 

africanampop Percent of African American Population -0.236 

ov65poverty Percent of Population over 65 Years Old Living 
in Poverty -0.202 

nophone Ratio of Housing Units with No Phone -0.169 

femalehhpoverty Percent Female Households Living in Poverty -0.166 

 

  



Appendix 4 (cont.) 

Dimension of  
social 
vulnerability 

Sign 
Adjustment 

Variance 
explained 

Variance 
(eigenvalues) 

Dominant variables (variable 
codes, in order of importance) Variable names Loadings 

Isolation  + 14.94% 4.63 

pubtransp Percent use of public transportation to the 
workplace 0.323 

travtimemore60 Percent of Population with Travel Time to Work 
greater than 60 minutes 0.286 

hisplatpop Percent of Hispanic/Latino Population 0.226 

otherracepop Percent of people of race other than White, 
Hispanic, African American 0.222 

speakengnotwell Percent of Population Speaking English Less 
than very Well 0.187 

percapincomei Per Capita Income (inverse) -0.303 

Housing and 
Age + 6.10% 1.89 

grossrentmor35 Percent of Housing units with a rent of 35 
percent or more  0.346 

popover65 Percent of Population  65 and Over 0.339 
medage Median age 0.302 
workinghome Percent of people working from home 0.290 

mortggreat35 Percent of Housing units with a mortgage: of 35 
percent or more  0.170 

 

  



Appendix 4 (cont.) 

Dimension of  
social 
vulnerability 

Sign 
Adjustment 

Variance 
explained 

Variance 
(eigenvalues) 

Dominant variables (variable 
codes, in order of importance) Variable names Loadings 

Dependency || 5.40% 1.67 

pop25nohsdiploma  Ratio of Population Over 25 With No High 
School Degree 0.309 

ov65livealone Percent of People over 65 Living Alone -0.309 

great20units Percent of Structures with 20 or more Units -0.300 

civiltransocc Percent of Employment in Transportation 0.255 
popunder5  Percent of Population Under 5  0.224 
singleunit Ratio of Single Unit  Structures 0.216 

civilservocc Ratio of Employment in Service Industries 0.170 

civlabforceunemp Percent of civilian labor force that is 
unemployed 0.167 

Remoteness - 5.01% 1.55 
dist2hosp Distance to health care centers -0.610 
dist2school Distance to school -0.528 
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